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In this paper the non-linear vibrations of beams excited by vortex-shedding are considered.
In particular, the steady state responses of beams near the synchronization region are taken
into account. The main aerodynamic properties of wind are described by using the semi-
empirical model proposed by Hartlen and Currie. The finite element method and the strip
method are used to formulate the equation of motion of the system treated. The harmonic
balance method is adopted to derive the amplitude equations. These equations are solved
with the help of the continuation method which is very convenient to perform the parametric
studies of the problem and to determine the response curve in the synchronization region.
Moreover, the equations of motion are also integrated using the Newmark method. The
results of calculations of several example problems are also shown to confirm the efficiency
and accuracy of the presented method. The results obtained by the harmonic balance method
and by the Newmark methods are in good agreement with each other.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The effects of wind action on structures are vibrations of different kinds. Some of
them can be dangerous for the safety of structures. Slender structures like steel chimneys,
bridge pylons and guyed masts are examples of structures which are very sensitive to
wind-induced vibrations. One type of such dangerous vibrations is known as the
lock-in phenomenon. The effects of these vibrations are the results of wind passing across
a bluff body and forming an aerodynamic wake. In a flowing fluid, vortices are shed
alternately from either side of the body, and the resulting changes in circulation around
the body lead to fluctuating forces. As the frequency of shedding os is approximately equal
to one of the natural frequencies of structures on; the structure often vibrates with large
amplitudes in a plane perpendicular to the flow direction. Vortex-induced vibrations are
found to be amplitude dependent, self-limiting and very sensitive to the structural damping
level. As it is clearly shown in many papers describing the results of experimental works
(written, for example, by Brika and Laneville [1] and Goswami et al. [2]) in the
synchronization range (i.e., when !s � !n), the vibrations of structures are periodic and
modulated outside this range. In the lock-in range the oscillation of the body takes control
of the shedding and the feedback of the affected flow field may, in turn, reinforce the
vibrations.

The investigations of the lock-in phenomenon, which is complex, requires advanced
theoretical models, e.g., Navier–Stokes equations, but the computational requirements of
these models strongly limit their applications. Due to the complicated process of
simulation of vortex shedding phenomena, empirical models are often used in civil
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engineering because one is mainly interested in the maximum vortex-induced response of
structures and the details concerning the flow are less important. Therefore, empirical or
semi-empirical models that provide a reasonable approximation of the aeroelastic
response are used. There are a number of models of this kind. Generally speaking,
almost all these models are non-linear and deterministic or stochastic. The most popular
stochastic model proposed by Vickery and Basu [3] takes into account the probabilistic
character of the wind excitation forces. Recently, a new model of this kind is proposed by
Flaga [4].

Deterministic models fall into two main categories. The basic idea of the first model is
that the fluid is associated with an internal degree of freedom that interacts with the
structural elements in the form of two coupled oscillators. The models of this kind are
proposed by Hartlen and Currie [5], Iwan and Blevins [6] and by Landle [7]. The Hartlen–
Currie model was modified by Skop and Griffin [8] who introduced a non-linear spring
stiffness. However, the experiments by Oey et al. [9], set up specifically to identify the effect
of non-linear stiffness, concluded that the response of a cylinder was insensitive to this
effect. Recently, a very interesting model was presented by Krenk and Nielsen [10].
Another class of models proposed by Simiu and Scanlan [11], Vickery and Basu [3],
Goswami et al. [12] and Larsen [13] describes the phenomenon by a single equation of
motion in which aeroelastic forcing terms are included.

At the present time it is hard to say which model is the best. Each model has its own
advantages and disadvantages. For example, in the Vickery and Basu model the so-called
correlation length of the aerodynamic forces can be taken into account in a natural way.
However, in the deterministic models, the correlation length cannot be easily introduced
because of the stochastic character of this quantity. An empirical formula which
approximately describe the correlation length in terms of amplitudes of vibration is
proposed by Ruschaweyh [14].

Despite its own limitation the model proposed by Harten and Currie is often used as the
one which seems to be in quite good agreement with the experimental data.

The problem of vortex-induced vibrations of beams was analyzed previously
by Baroush et al. [15] and Dul and Pietrucha [16], who used semi-empirical
aerodynamic models and time integration methods to determine the steady state
vibration of beams. This approach requires an extremely high computational
effort because of small system damping. However, the computational cost can be
drastically reduced by using the harmonic balance method as shown by Lewandowski [17]
for the semi-empirical models proposed by Simiu and Scanlan [18] and by Goswami
et al. [12].

In the present paper, the strips and finite element methods together with the Hartlen–
Currie type vortex shedding model are used in a parametric analysis of vortex-induced
vibrations of beams in a synchronization region.

2. BRIEF DESCRIPTION OF HARTLEN–CURRIE MODEL

In reference [5] an elastically supported, rigid cylinder in air flow is considered. The
cylinder motion is restricted to pure translation in the direction perpendicular to the flow
direction and the cylinder axis. The equations of motion for this model are derived in the
following non-dimensional form:

ẅ þ 2xẇ þ w ¼ a!2
s cL; ð1Þ

.ccL � �!s ’ccL þ g’cc3L=!s þ !2
s cL ¼ b!nẇ; ð2Þ
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where, w; cL; �; !s; �; �; a; b are the cylinder displacement, the ‘‘hidden’’ aerodynamic
variable interpreted as the lift coefficient, the damping factor for the cylinder, the
non-dimensional shedding frequency which is proportional to the wind mean
velocity U and some aerodynamic constants respectively. The differentiation with respect
to time is denoted by a dot. The aerodynamic constants a; g; a; b are determined
experimentally. Equation (2) is the non-linear, van der Pol differential equation. From the
mathematical point of view this equation could be understood as the equation of motion
of a fictitious mechanical oscillator with a non-linear damping characteristic. More
detailed description of the above model is given in reference [5]. In the next section, the
Hartlen–Currie model will be extended to beams treated as systems with multi degrees of
freedom.

3. DESCRIPTION OF COMPUTATIONAL MODEL

The finite element method has received broad acceptance as the convenient analysis tool
in structural engineering because this method allows detailed computations of the response
and stress distributions in structural members subjected to loads. In this work, the well-
known displacement version of finite element method is used to developed a discrete model
of a beam. This approach to considered particular problem is more adequate than very
popular modal ones because the influence of more then one mode of vibration can be
taken into account in an easy way. As shown in many papers (see, for example references
[19-22]), the interaction of two or more modes of vibration could be very important if non-
linear systems are considered. Moreover, beams with the non-uniform spatial distribution
of the beam bending stiffness, the mass per unit length or the cross-section characteristic
dimension can be modelled more accurately.

The considered system (the beam and the flow field) is divided into finite elements
(beam) and strips (flow field). Each strip is parallel to the direction of the undisturbed flow
and has a width equal to the finite element length. The strips are also perpendicular to the
finite elements. The main assumption is that flows in strips are mutually independent,
which means that the aerodynamic forces are induced only by the flow in the associated
strip.

In this article, two types of descriptions of the lift factor cLðx; tÞ along the strip width are
taken into account. In Case 1, the distribution of the lift coefficient cLðx; tÞ along the strip
width is a linear function of the nodal parameter and it is assumed that

cLðx; tÞ ¼ NT
LðxÞceðtÞ; ð3Þ

where NLðxÞ ¼ colðN1ðxÞ;N2ðxÞÞ; N1ðxÞ ¼ 1� Z; N2ðxÞ ¼ Z; Z ¼ x=l; ce ¼ colðca; cbÞ are the
vector of shape functions and the vector of nodal parameters of the strip respectively.
Moreover, in the Case 2, it is assumed that the lift factor is constant along the strip. Thus,
one can formally write NLðxÞ ¼ colðN1ðxÞÞ;N1ðxÞ ¼ 1; and ce ¼ colðcÞ:

The cross-wind transverse displacements wðx; tÞ of the typical two-node beam finite
element with two degrees of freedom per node are described using the Hermitan
polynomial shape functions, i.e.,

wðx; tÞ ¼ NT
b ðxÞweðtÞ; ð4Þ

where NbðxÞ ¼ colðN3ðxÞ;N4ðxÞ;N5ðxÞ;N6ðxÞÞ and weðtÞ ¼ colðwa;fa;wb;fbÞ are the vector
of beam shape functions and the vector of nodal parameters respectively.
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The kinetic and strain energy of the finite element can be written in the form

Ke
b ¼ 1

2
’wwT

e M
e
b ’wwe; W e

b ¼ 1
2
wT

e K
e
bwe; ð5Þ

where Me
b and Ke

b are the well-known mass and stiffness matrices respectively.
The virtual work of non-conservative forces acting on the finite element consists

of the damping term and external excitation term. The damping term is represented
by

dLe
bd ¼ dwT

e D
e
b ’wwe; ð6Þ

where the De
b damping matrix is given by De

b ¼ k1Me
b þ k2Ke

b and k1 and k2 are some
constants. It means that the so-called proportional damping model is taken into account.

The aerodynamic external forces f ðx; tÞ acting on the beam are given by

f ðx; tÞ ¼ 1
2
rU2ðxÞDðxÞcLðx; tÞ; ð7Þ

where the r;UðxÞ;DðxÞ symbols denote the air density, the mean velocity of wind and the
cross-section characteristic dimension respectively. The distribution of mean wind velocity
along the beam could be represented as a product of the reference wind velocity denoted
by U and the function of the wind profile pðxÞ i.e., UðxÞ ¼ UpðxÞ: In a similar way, the
non-dimensional characteristic cross-section dimension dðxÞ is defined as dðxÞ ¼ DðxÞ=D;
where D is the reference characteristic cross-section dimension. However, in this paper, it
is assumed that UðxÞ and DðxÞ are constant along the length of the finite element. It means
that pðxÞ ¼ pe and dðxÞ ¼ de are also constant.

The virtual work of aerodynamic forces can be written asZ t2

t1

dLe
ba dt ¼

Z t2

t1

Z l

0

dwðxÞf ðx; tÞ dx dt ¼
Z t2

t1

o2
sdw

T
e S

e
LceðtÞ dt; ð8Þ

where the Se
L matrix is defined by

Se
L ¼

rD3p2
ede

8p2S2

Z l

0

NbðxÞNT
LðxÞ dx: ð9Þ

Moreover, os ¼ 2pSU=D; S is the Stouhal number and l is the length of the finite element.
After integration the elements of the Se

L matrix are
in Case 1

Se
L ¼

D3p2
edel

8p2S2

7

20

3

20
l

20

l

30
3

20

7

20

�
l

30
�

l

20

2
66666666664

3
77777777775
; ð10aÞ

whereas in Case 2

Se
L ¼

D3p2
edel

8p2S2
col

1

2
;

l

12
;
1

2
;�

l

12

� 	
: ð10bÞ

The Hartlen–Currie model describes, by equation (2), the motion of some artificial
variable (i.e., the motion of the lift factor) which characterizes the flow action in a global
way. This equation takes into account only the primary characteristic deduced from
experiments. However, many details connected with the flow are omitted. From the
mathematical point of view the above mentioned equation could be understood as the
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equation of motion of a fictitious mechanical oscillator with a non-linear damping
characteristic. In order to make possible the weak formulation for the whole system the
‘‘kinetic and strain energy’’ and the ‘‘virtual work of non-conservative forces’’ for the
fictitious oscillators are also introduced in this article. Obviously, these quantities must be
considered as specific functionals, which leads one to the counterparts of the second
equation of the Hartlen–Currie model in the case of systems with many
degrees of freedom. The ‘kinetic and strain energy’ for the lift coefficient is defined as
follows

Ke
L ¼

Z l

0

1
2
’cc2Lðx; tÞ dx ¼ 1

2
’ccTe M

e
L ’cce; W e

L ¼
Z l

0

1
2
o2

s c2Lðx; tÞ dx ¼ 1
2
o2

s c
T
e K

e
Lce; ð11Þ

where the matrices

Me
L ¼

Z l

0

NLðxÞNT
LðxÞ dx; Ke

L ¼
p2

e

d2
e

Z l

0

NLðxÞNT
LðxÞ dx; ð12Þ

are the ‘‘mass’’ and ‘‘stiffness’’ matrices of introduced fictitious aerodynamic oscillators.
After integration these matrices can be written in the following form:
in Case 1

Me
L ¼ l

1

3

1

6
1

6

1

3

2
664

3
775; Ke

L ¼
p2

e

d2
e

l

1

3

1

6
1

6

1

3

2
664

3
775; ð13aÞ

where as in Case 2

Me
L ¼ l½1�; Ke

L ¼
p2

e

d2
e

l½1�: ð13bÞ

The ‘virtual work of the damping forces’ for the ‘hidden variable’ is defined byZ t2

t1

Z l

0

dcLðxÞð�aos ’ccLðx; tÞ þ g’cc3Lðx; tÞ=osÞ dx dt

¼
Z t2

t1

dcTe ½�osD
e
L þ o�1

s De
NLð’cce; ’cceÞ�’cceðtÞ dt; ð14Þ

where

De
L ¼

aepe

de

Z l

0

NLðxÞNT
LðxÞ dx; ð15Þ

De
NLð’cce; ’cceÞ ¼

gede

pe

Z l

0

NT
LðxÞ’cceðtÞ’cc

T
e ðtÞNLðxÞNLðxÞNT

LðxÞ dx: ð16Þ

After integration, the De
L matrix can be written in the following form:

in Case 1

De
L ¼

aepel

de

1

3

1

6
1

6

1

3

2
664

3
775; ð17aÞ

in Case 2

De
L ¼

aepel

de

½1�: ð17bÞ
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The De
NLð’cce; ’cceÞ non-linear damping matrix is a quadratic function of velocity of nodal

parameters. The elements of this matrix are denoted by dij and can also be written in the
explicit form given below

in Case 1

d11 ¼
gedel

pe

1

5
c2a þ

1

10
cacb þ

1

30
c2b

� 	
;

d12 ¼ d21 ¼
gedel

pe

1

20
c2a þ

1

15
cacb þ

1

20
c2b

� 	
;

d22 ¼
gedel

pe

1

30
c2a þ

1

10
cacb þ

1

5
c2b

� 	
; ð18aÞ

in Case 2

d11 ¼
gedel

pe

c2: ð18bÞ

In the above relations the ae and ge symbols denote the constants which must be
determined experimentally and they can be different for each strip.

The ‘virtual work of external forces’ associated with the fictitious oscillators is defined
by Z t2

t1

dLLe dt ¼
Z t2

t1

Z l

0

dcðxÞbe ’wwðx; tÞ dx dt ¼
Z t2

t1

dcTLS
e
b ’wweðtÞ dt; ð19Þ

where

Se
b ¼ be

Z l

0

NLðxÞNT
b ðxÞ dx: ð20Þ

The explicit form of the Se
b matrix is given by

in Case 1

Se
b ¼ bel

7

20

l

20

3

20
�

l

30
3

20

l

30

7

20
�

l

20

2
664

3
775 ð21aÞ

and in Case 2

Se
b ¼ bel

1

2
;

l

12
;
1

2
;�

l

12


 �
: ð21bÞ

Here be is the experimentally determined aerodynamic constant. The equation
of motion of the original Hartlen–Currie model is described using the non-dimensional
time t ¼ ont; where on is the natural frequency of the cylinder. In this paper, we
do not deal with non-dimensional time. For this reason, our definition of the be

constant is be ¼ onbHC ; where bHC is the b constant as defined by Hartlen and Currie and
now on denotes the natural frequency near which the synchronization region is currently
analyzed.

The equations of motion are derived on basis of the Hamilton principle, which states
that Z t2

t1

½dðK � W Þ þ dL� dt ¼ 0; ð22Þ
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where d is the variational operator and K ;W and dL denote the total kinetic and strain
energy of the system and the virtual work of non-conservative forces respectively. Using
the Hamilton principle one can derive the following equations of motion for the typical
beam element and strip respectively

Re
b ¼ Me

b .wweðtÞ þDe
b ’wweðtÞ þ Ke

bweðtÞ � o2
sS

e
LceðtÞ; ð23Þ

Re
L ¼ Me

L .cceðtÞ � osD
e
L ’cceðtÞ þ o�1

s De
NLð’cceðtÞ; ’cceðtÞÞ’cceðtÞ þ o2

sK
e
LceðtÞ � Se

b ’wweðtÞ: ð24Þ

After the assembly procedure the equations of motion for the entire system can be
written as

RbðtÞ ¼ Mb .wwðtÞ þDb ’wwðtÞ þ KbwðtÞ � o2
sSLcðtÞ ¼ 0; ð25Þ

RLðtÞ ¼ML .ccðtÞ � osDL ’ccðtÞ þ o�1
s DNLð’ccðtÞ; ’ccðtÞÞ’ccðtÞ

þ o2
sKLcðtÞ � Sb ’wwðtÞ ¼ 0;

ð26Þ

where Mb;ML;Db;DL;DNLð’ccðtÞ; ’ccðtÞÞ; Kb;KL;Sb;SL;wðtÞ; cðtÞ are the global counterparts of
previously defined, matrices and vectors on a level of element and strip. The RbðtÞ and
RLðtÞ residual vectors vanish in an equilibrium state.

4. DERIVATION OF AMPLITUDE EQUATIONS

The steady state, periodic response of the system can be described in a first appro-
ximation by

wðtÞ ¼ wc cosot þ ws sinot; cðtÞ ¼ cc cosot þ cs sinot; ð27Þ

where wc;ws; cc; cs are the unknown vectors of harmonic amplitudes of nodal
parameters of beam and strips on a level of the entire system and the finite element
and strip respectively. Also, the frequency of oscillation o is an unknown quantity.
In this paper, the solution with only one harmonic is taken into account because
the results of experiments show that it is accurate enough in the synchronization
region.

The solutions of the equations of motion on a finite element level and on a strip level are
given in a similar way:

weðtÞ ¼ wce cosot þ wse sinot; ceðtÞ ¼ cce cosot þ cse sinot: ð28Þ

The in-time Galerkin procedure is used to derive the amplitude equations. These
equations follow from the Galerkin conditions which state that

2

T

Z T

0

RbðtÞcosot dt ¼ 0;
2

T

Z T

0

RbðtÞsinot dt ¼ 0;

2

T

Z T

0

RLðtÞcosot dt ¼ 0;
2

T

Z T

0

RLðtÞsinot dt ¼ 0; ð29Þ

where T ¼ 2p=o denotes the unknown period of the limit cycle. The RbðtÞ and RLðtÞ
residual vectors appearing in equations (29) are determined by introducing the assumed
solution of motion equations into equations (25) and (26). After calculating the resulting
integrals from the Galerkin conditions, one obtains the following set of non-linear



R. LEWANDOWSKI682
algebraic equations with respect to wc;ws; cc and cs:

ðKb � o2MbÞwc þ oDbws � o2
sSLcc ¼ 0; ð30Þ

� oDbwc þ ðKb � o2MbÞws � o2
sSLcs ¼ 0; ð31Þ

ðo2
sKL � o2MLÞcc � oosDLcs

þ 3
4o

3o�1
s ½DNLðcc; ccÞ þDNLðcs; csÞ�cs � oSbws ¼ 0;

ð32Þ

oosDLcc � 3
4
o3o�1

s ½DNLðcc; ccÞ þDNLðcs; csÞ�cc

þ ðo2
sKL � o2MLÞcs þ oSbwc ¼ 0:

ð33Þ

The explicit form of elements of the non-linear matrix De
NLðcce; cseÞ; which is the

counterpart of the DNLðcc; csÞ matrix on a strip level, is given below:
in Case 1

d11 ¼
gedel

pe

1

5
ccacsa þ

1

20
ðccacsb þ ccbcsaÞ þ

1

30
ccbcsb


 �
;

d12 ¼ d21 ¼
gedel

pe

1

20
ccacsa þ

1

30
ðccacsb þ ccbcsaÞ þ

1

20
ccbcsb


 �
;

d22 ¼
gedel

pe

1

30
ccacsa þ

1

20
ðccacsb þ ccbcsaÞ þ

1

5
ccbcsb


 �
; ð34aÞ

in Case 2

d11 ¼
gedel

pe

cccs: ð34bÞ

Above, the cca; ccb and csa; csb symbols denote the elements of the cce and cse vectors
respectively.

For convenience, and using the following notation:

*MMb ¼
Mb 0

0 Mb

" #
; *KKb ¼

Kb 0

0 Kb

" #
; *DDb ¼

0 Db

�Db 0

" #
; *SSL ¼

SL 0

0 SL

" #
;

ð35Þ

*MML ¼
ML 0

0 ML

" #
; *KKL ¼

KL 0

0 KL

" #
; *DDL ¼

0 DL

�DL 0

" #
; *SSb¼

0 Sb

�Sb 0

" #
;

ð36Þ

*DDNL ¼
0 DNLðcc; ccÞ þDNLðcs; csÞ

�DNLðcc; ccÞ �DNLðcs; csÞ 0

" #
; ð37Þ

*ww ¼ colðwc;wsÞ; *cc ¼ colðcc; csÞ; ð38Þ
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the amplitude equations can be rewritten in the compact form of the first order:

*GGbð *ww; *cc;o;osÞ ¼ ð *KKb � o2 *MMb þ o *DDbÞ *ww� o2
s
*SSL *cc ¼ 0; ð39Þ

*GGLð *ww; *cc;o;osÞ ¼ � o *SSb *ww

þ ½o2
s
*KKL � o2 *MML � oos

*DDL þ 3
4
o3o�1

s
*DDNLð*cc; *ccÞ�*cc ¼ 0:

ð40Þ

The most compact form of amplitude equations is given by

*GGðo;os; aÞ ¼ *KKðo;os; cÞ*aa ¼ 0; ð41Þ

where

*KKðo;os; *ccÞ ¼
ð *KKb � o2 *MMb þ o *DDbÞ �o2

s
*SSL

�o *SSb ðo2
s
*KKL � o2 *MML � oos

*DDL þ 3
4o

3o�1
s

*DDNLð*cc; *ccÞÞ

" #
;

*GG ¼ colð *GGb; *GGLÞ; *aa ¼ colð *ww; *ccÞ: ð42Þ

The *GG vector vanishes in an equilibrium state.

5. CONTINUATION PROCEDURE

The amplitude equation (41) is algebraic, homogenous and non-linear. Due to non-
linearity the solution of this type of equation, for the given value of U ; is not a trivial
problem, so it is necessary to apply an advanced procedure. Moreover, one is often
interested in the solution of the considered problem for different values of mean wind
velocity U taken from an assumed range.

For these reasons, equations (30)–(33) are solved for different os (or U due
to the relation os ¼ 2pSU=D) using the continuation method. The method has been
widely described in a book by Seydel [23]. It is very well oriented as a procedure for solving
the system of equations with a parameter. In this article the wind velocity is chosen
as the main parameter. It is easy to verify, one basis of equation (41), that *aa ¼ 0 is the
solution of the amplitude equations for all U :Moreover, if o and *aa=0 are, for a particular
value of U ; the solution of the amplitude equation then o; and �*aa are also the solution. It
follows from the facts that the amplitude equation is homogeneous and the non-linear
matrices of the type DNL; ðcc; csÞ are quadratic functions of amplitudes of the lift
coefficients cc and cs:

The trivial solution could be represented on the amplitude of vibration}wind
velocity diagram or the amplitude of lift coefficient}wind velocity diagram as a line
coinciding with the os (or U) axis. This is the line on which the bifurcation point exists.
An additional branch representing the non-trivial solution of equation (38) emanates from
the bifurcation point. This branch has been determined by means of the continuation
method.

The bifurcation analysis of the original Hartlen–Currie model described by equations
(1) and (2) has already been presented in reference [24] by Poore and Al-Rawi. It has been
found that the primary bifurcation points exist on the response curve and the non-trivial
solutions emanate from these points.

In the case of the system with many degrees of freedom the primary bifurcation points
could be determined as described below. At the beginning, the equations of motion (25)
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and (26) are written as a system of four first order matrix differential equations. Let
x1ðtÞ ¼ wðtÞ; x2ðtÞ ¼ ’wwðtÞ; x3ðtÞ ¼ cðtÞ and x4ðtÞ ¼ ’ccðtÞ: Now the equation of motion can be
written in the following matrix form:

’xxðtÞ ¼ AðxðtÞÞxðtÞ; ð43Þ

where xðtÞ ¼ colðx1ðtÞ;x2ðtÞ;x3ðtÞ;x4ðtÞÞ and

AðxðtÞÞ ¼

0 I 0 0

�M�1
b Kb �M�1

b Db o2
sM

�1
b SL 0

0 0 0 I

0 �M�1
L SL �o2

sM
�1
L KL M�1

L ðosDL � o�1
s DNLðx4;x4ÞÞ

2
66664

3
77775: ð44Þ

The one steady state solution of equation (43) is x ¼ 0: The stability of this steady state
is based on the exponential growth or decay of solutions of the following perturbation
equation:

d ’xxðtÞ ¼ AdxðtÞ; ð45Þ

where dxðtÞ is the small perturbation of steady state solutions and the matrix A which has
the form

A ¼

0 I 0 0

�M�1
b Kb �M�1

b Db o2
sM

�1
b SL 0

0 0 0 I

0 �M�1
L SL �o2

sM
�1
L KL M�1

L osDL

2
66664

3
77775: ð46Þ

It is well known that if the real parts of all eigenvalues of A are negative, the trivial
solution is stable, whereas if any of the real parts are positive, the trivial solution is
unstable. The bifurcation point occurs when there is a zero eigenvalue or whenever there is
a pair of complex conjugate purely imaginary eigenvalues. In the latter case we have the
Hopf bifurcation point from which the periodic solution emanates as one of the system
parameters (here the mean wind velocity) varies. By holding the remaining system
parameter fixed and varying the wind speed gradually, the stability of trivial solution can
be checked and in this way the critical wind speed Uc at which the A matrix has a pair of
purely imaginary eigenvalues can be determined.

Unfortunately, for the considered problem, the numerical experiments show that it is
very difficult to determine the non-trivial branch of the periodic solution if the primary
bifurcation point is taken as the starting point of the continuation procedure.
Furthermore, outside the synchronization region the amplitudes of vibration are small
and close to the ones obtained on basis of the linear theory. For these reasons the initial
approximation of the first point on the response curve can be chosen as follows. The initial
value of shedding frequency os is taken far away from the synchronization range and the
initial value of o is equal to os: The chosen initial values of amplitude vectors are

wc ¼ ws ¼ cc ¼ 0; csi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4g
DL; ii

s
; ð47Þ

where DL; ii and csi are the ith diagonal element of the DL matrix and the ith element of the
cs vector respectively. The initial values of the cs vector are approximately equal to the
amplitude of the lift factor in the case of wind acting on the motionless rigid finite elements
(see also reference [5]). The Newton method is used to determine accurately the first point
on the response curve.
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Having one point on the response curve one can determine the next one using the
continuation method. In comparison with the typical continuation procedure applied to
the system of non-linear equations, the one used in this paper is different in some
important details and that is why it is described briefly below.

The continuation method is incremental-iterative. The solutions of the matrix
amplitude equation are represented by a sequence of vortex-shedding frequencies,
the frequencies of periodic responses and the amplitudes vectors, i.e. mos;m o;m *aa for
m ¼ 1; 2; . . . : For any incremental step, the m *aa vector and mos;m o of the proceeding step
m is assumed to be given. The purpose of the incremental process is to find the increments
of the above-mentioned quantities denoted by Dos;Do;D*aa; which can be accumulated
to yield

mþ1os ¼ mos þ Dos;
mþ1o ¼ moþ Do; mþ1 *aa ¼ m *aaþ D*aa: ð48Þ

The last equation can be also rewritten in the form

mþ1 *ww ¼ m *wwþ D *ww; mþ1 *cc ¼ m*ccþ D*cc: ð49Þ

In equation (41) there are (n þ 1) unknowns (i.e., o; *ww and *cc) and the main parameter
os: However, since the considered dynamic system is autonomous, one of the Fourier
coefficients in the function describing the steady state solution can be fixed. For this
reason, it is assumed, without loss of generality, that one element of the *ww vector, say *wwk; is
equal to zero and we can write the following equation:

*wwk ¼ 0: ð50Þ

Furthermore, following the continuation method described for example by Seydel [23]
the constraints equation is added to the matrix amplitude equation in the form proposed
by Crisfield [25]

D *wwTD *ww=m2b þ D*ccTD*cc=m2L ¼ ðDsÞ2; ð51Þ

where Ds is the increment of the arc-length s;mb and mL are some scaling parameters. As
before the D symbol means the increment of succeeding quantity.

Because of non-linearity the set of non-linear equations (41), (50) and (51) can be solved
with respect to os;o; *aa only by an iterative procedure. Suppose, after the iteration i; one
knows some approximation of the solution denoted by oi

s;o
i; *aai: The iteration change of

the frequencies increments dos; do and the d*aa vector of amplitude increments are governed
by the following equation:

*GGað*aa
i;oi

s;o
iÞd*aa ¼ � *GGð*aai;oi

s;o
iÞ � *GGsð*aa

i;oi
s;o

iÞdos � *GGoð*aa
i;oi

s;o
iÞdo; ð52Þ

where *GGa is the matrix of the first derivatives of the *GG vector with respect to *aa and *GGs; *GGo

are the vectors of the first derivatives of *GG with respect to os and o respectively. The
explicit form of the above quantities will be given in the next section.

Moreover, we can write

d *wwk ¼ 0; ð53Þ

Condition (53) is used to remove d *wwk from a set of unknowns and to modify
the incremental equation (52). The kth column of the *GGa matrix which is multiplied
by d *wwk is removed and the *GGs vector is introduced in its place. Also the *aa vector
of unknowns is modified in such a way that dos is introduced in a place of d *wwk:
Denoting the *GGa matrix and the *aa vector after modification by *GGam and *aam we can rewrite
equation (52) in the form

*GGamð*aa
i;oi

s;o
iÞd*aam ¼ � *GGð*aai;oi

s;o
iÞ � *GGoð*aa

i;oi
s;o

iÞ do: ð54Þ
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The d*aam vector can be written as a sum of two components

d*aam ¼ d*aamr þ d*aamodo; ð55Þ

where the first component represents the influences of the residual vector and the second
one is due to the unit change of the frequency of steady state vibration. The d*aamr and d*aamo

vectors are determined by using the following relations:

d*aamr ¼ � *GG
�1

amð*aa
i;oi

s;o
iÞ *GGð*aai;oi

s;o
iÞ; ð56Þ

d*aamo ¼ � *GG
�1

amð*aa
i;oi

s;o
iÞ *GGoð*aa

i;oi
s;o

iÞ: ð57Þ

Having d*aamr and d*aamo we can easily form the d*aar ¼ colðd *wwr; d*ccrÞ and d*aao ¼ col

ðd *wwo; d*ccoÞ vectors. The iterative change of shedding frequency due to residuals dosr and
due to the unit change of frequency of vibration doo is also determined. The total iterative
change of dos is given by

dos ¼ dosr þ dosodo: ð58Þ

The unknown iterative change of frequency of steady state vibration do is determined in
the usual way. Substituting the total increment of *aa up to the ði þ 1Þth iteration given by
D*aaiþ1 ¼ D*aai þ d*aa into constraints equation (51) gives the following equation with respect
to do:

a1do2 þ a2doþ a3 ¼ 0; ð59Þ

where

a1 ¼ d *wwT
od *wwo=m2b þ d*ccTod*cco=m

2
c ;

a2 ¼ 2ðD *wwi þ d *wwrÞ
Td *wwo=m2b þ 2ðD*cci þ d*ccrÞ

Td*cco=m2c ;

a3 ¼ ðD *wwl þ d *wwrÞ
TðD *wwi þ d *wwrÞ=m2b þ ðD*cci þ d*ccrÞ

TðD*cci þ d*ccrÞ=m2c � Ds2: ð60Þ

In equation (59), the increment do; which gives a positive value of ðD*aaiþ1ÞTD*aai; is taken
as the non-trivial solution to avoid doubling back on the response curve. If both solutions
give negative or positive values to ðD*aaiþ1ÞTD*aai; the corresponding incremental step is
restarted automatically with the arc-length reduced to half. Also, in the case of negative
discriminant of equation (59), the same procedure is followed. To prevent the number of
iterations from being too large, a maximum number of iterations is set. If the number of
iteration exceeds it, the incremental step is restarted according to the same procedure as
before.

A new approximation of the solution of the matrix amplitude equation is given by

D*aaiþ1 ¼ D*aai þ d*aa; Doiþ1
s ¼ Doi

s þ dos; Doiþ1 ¼ Doi þ do;

*aaiþ1 ¼ m *aaþ D*aaiþ1; oiþ1
s ¼ mos þ Doiþ1

s ; oiþ1 ¼ moþ Doiþ1: ð61Þ

The iterations are repeated until the assumed accuracy of calculations is reached.
The existence of critical points on the response curve can be checked in a similar way as

is described in reference [26].

6. DERIVATION OF *GGa MATRIX AND *GGs AND *GGo VECTORS

Taking into account relations (30)–(33) as a starting point one can easily verify that the
*GGs and *GGo vectors (i.e., the vectors of the first derivatives of *GG with respect to os and o
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respectively) can be written in the following form:

*GGs ¼

�2osSLcc

�2osSLcs

2osKLcc � oDLcs � 3
4
o3o�2

s ½DNLðcc; ccÞ þDNLðcs; csÞ�cs

oDLcc þ 3
4o

3o�2
s ½DNLðcc; ccÞ þDNLðcs; csÞ�cc þ 2osKLcs

2
6664

3
7775; ð62Þ

*GGo ¼

�2oMbwc þDbws

�Dbwc � 2oMbws

�2oMLcc � osDLcs þ 9
4
o2o�1

s ½DNLðcc; ccÞ þDNLðcs; csÞ�cs � Sbws

osDLcc � 9
4
o2o�1

s ½DNLðcc; ccÞ þDNLðcs; csÞ�cc � 2oMLcs þ Sbwc

2
6664

3
7775: ð63Þ

The differentiation of non-linear parts of equations (32) and (33) needs particular
attention when we derive the elements of the *GGa matrix. The non-linear part of equation
(32) is

Fcðcc; csÞ ¼ 3
4
o3o�1

s ½DNLðcc; ccÞ þDNLðcs; csÞ�cs ð64Þ

and the directional increments of this function can be written as

dFcðcc; csÞ
dcc

¼
@Fcðcc; csÞ

@cc

dcc ¼
3

4
o3o�1

s

dDNLðcc; ccÞ
dcc

cs; ð65Þ

dFcðcc; csÞ
dcs

¼
@Fcðcc; csÞ

@cs

dcs ¼
3

4
o3o�1

s ½DNLðcc; ccÞ þDNLðcs; csÞ�dcs þ
dDNLðcs; csÞ

dcs

cs

� �
:

ð66Þ

The terms like ðdDNLðcc; ccÞ=dccÞcs appearing in relations (65) and (66) must be derived
on a strip level. Taking into consideration the definition of the De

NLðcce; cceÞ matrix given
below

De
NLðcce; cceÞ ¼

gede

pe

Z l

0

NT
LðxÞccec

T
ceNLðxÞNLðxÞNT

LðxÞ dx ð67Þ

and noting that the terms like NT
LðxÞccec

T
ceNLðxÞ ¼ cTceNLðxÞNT

LðxÞcce are scalars the
following simple result is obtained

dDe
NLðcce; cceÞ
dcce

cse ¼ 2De
NLðcse; cceÞdcce: ð68Þ

Now relations (65) and (66) can be rewritten in the form

dFcðcc; csÞ
dcc

¼
3

2
o3o�1

s DNLðcs; ccÞdcc; ð69Þ

dFcðcc; csÞ
dcs

¼
3

4
o3o�1

s ½DNLðcc; ccÞ þ 3DNLðcs; ccÞ�dcs: ð70Þ

In a similar way, one can analyze the non-linear part of equation (33).
Finally, the *GGa matrix can be written in the following form:

*GGa ¼

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

2
6664

3
7775; ð71Þ



R. LEWANDOWSKI688
where the Gij submatrices are defined below

G11 ¼ Kb � o2Mb; G12 ¼ oDb; G13 ¼ �o2
sSL; G14 ¼ 0;

G21 ¼ �oDb; G22 ¼ Kb � o2Mb; G23 ¼ 0; G24 ¼ �o2
sSL;

G31 ¼ 0; G32 ¼ �oSb; G33 ¼ o2
sKL � o2ML þ 3

2
o3o�1

s DNLðcs; ccÞ;

G34 ¼ �oosDL þ 3
4
o3o�1

s ½DNLðcc; ccÞ þ 3DNLðcs; csÞ�; G41 ¼ oSb;

G42 ¼ 0; G43 ¼ oosDL � 3
4
o3o�1

s ½3DNLðcc; ccÞ þDNLðcs; csÞ�;

G44 ¼ o2
sKL � o2ML � 3

2o
3o�1

s DNLðcs; ccÞ: ð72Þ

7. SOLUTION OF MOTION EQUATIONS BY NEWMARK METHOD

A time integration method is also used to obtain the steady state, periodic vibration of
the considered system and to verify the accuracy of the solution given by the harmonic
balance method. The well-known version of the Newmark method called the average
acceleration method is chosen to integrate the equations of motion. The algorithm of this
method is described in this section.

For convenience, equations (25) and (26) are first rewritten in the following compact
form:

RðtÞ ¼ MaðtÞ þDðvðtÞÞvðtÞ þ KdðtÞ ¼ 0; ð73Þ

where

R ¼ colðRb;RLÞ; dðtÞ ¼ colðwðtÞ; cðtÞÞ; vðtÞ ¼ ’ddðtÞ; aðtÞ ¼ ’vvðtÞ;

M ¼
Mb 0

0 ML

" #
; K ¼

Kb �o2
sSL

0 o2
sKL

" #
; D ¼

Db 0

�Sb �osDL þ o�1
s DNLðv; vÞ

" #
:

The following Newmark formulas:

dnþ1 ¼ dn þ tvn þ 1
4
t2ðanþ1 þ anÞ; ð74Þ

vnþ1 ¼ vn þ 1
2
tðanþ1 þ anÞ; ð75Þ

gives the system state at time tnþ1 ¼ tn þ t; where t is the small time interval, if the state at
tn (i.e., the an; vn; dn vectors) and the anþ1 acceleration vector are known. If the equation of
motion is understood to be the equilibrium equation at time tnþ1; i.e.,

Rnþ1 ¼ Manþ1 þDðvnþ1Þvnþ1 þ Kdnþ1 ¼ 0; ð76Þ

the solution of equations (74)–(76) will give the system state at time tnþ1: Equation (76) is
non-linear and the Newton method is needed to solve it. Equation (76) is treated as non-
linear with respect to anþ1 and the incremental equation corresponding to equation (76)
has the form

Mtda ¼ �Rnþ1; ð77Þ

where

Mt ¼
@Rnþ1

@anþ1
¼ Mþ

@Dðvnþ1Þ
@vnþ1

@vnþ1

@anþ1
þ K

@dnþ1

@anþ1
: ð78Þ
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Because

@vnþ1

@anþ1
¼

1

2
tI;

@dnþ1

@anþ1
¼

1

4
t2I;

@Dðvnþ1Þ
@vnþ1

¼ Dt; ð79Þ

where I is the diagonal matrix and

Dt ¼
Db 0

�Sb �osDL þ 3o�1
s DNLð’cc; ’ccÞ

" #
ð80Þ

the Mt matrix is given by

Mt ¼ Mþ 1
2tDt þ 1

4t
2K: ð81Þ

Starting with the given initial conditions, the system of equations (74)–(76) is solved and
the solution of the equation of motion can be determined by applying the above method
recurrently for a number of t intervals. The steady state solution can be obtained in this
way as well.

8. PARAMETRIC ANALYSIS

First of all, results obtained for a simply supported beam by using the well-known
normal approach and the present method will be compared. The beam is of length
L ¼ 32	0m, the bending rigidity EJ ¼ 2	0
 109 Nm2 and the diameter cross-section
D ¼ 1	0m is chosen. The modal damping of the first mode of vibration is equal to 0	2% of
critical damping. The beam is divided into 10 identical finite elements. The mean wind
speed is equal to U for all finite elements. A brief description of the solution obtained by
the normal mode approach is given in Appendix A. The results of the calculations are
shown in Figures 1 and 2. In Figure 1, the non-dimensional amplitude of vibration, i.e.,
v ¼ w=D in the middle of the beam versus non-dimensional frequency of vibration o=on is
presented. on is the first natural frequency of beam. The solid line represents the response
curve obtained by means of the finite element method whereas the response curve
determined by the normal mode approach is shown as the dashed line. Moreover, in
Figure 1. A comparison of the response curves obtained by the normal mode approach (– – – –) and by the
present method (}}).



Figure 2. A comparison of the lift factor determined by means of the normal mode approach (– – – –) and by
the present method (}}).
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Figure 2 a similar comparison for the lift coefficient is presented. A good agreement
between the results obtained by both methods is visible.

Several numerical analyses for the free-fixed beam with a cylindrical cross-section have
been carried out. The following principal data have been chosen: the beam length
L ¼ 32	0m, the bending rigidity EJ ¼ 2	0
 109 Nm2, the diameter of beam cross-section
D ¼ 1	2 m: In almost all the cases considered the beam is divided into 10 identical finite
elements. The data concerning air are the following: the air density r ¼ 1	2 kg=m3;
the Strouhal number S ¼ 0	2 and the following aerodynamic parameter are chosen:
a ¼ 0	02; b ¼ 0	4; g ¼ 2=3:

The first and second natural frequencies of the beam are equal to o1 ¼ 7	2387 rad=s
and o2 ¼ 45	3656 rad=s: The damping matrix of the beam is proportional
i.e. Db ¼ a1Mb þ a2Kb and the factors a1 and a2 are determined in such a way that the
modal damping of the first and second modes of beam vibrations are equal to 0.1% of
critical damping.

The data concerning air are chosen as in a previous case. The mean wind speed is
equal to U in a range of first eight elements from the top of beam and equal to zero for
others.

The results of calculations obtained by means of the harmonic balance method
are shown in Figure 3 (the solid line). The region of the lock-in phenomenon can
easily be recognized from this figure. Moreover, the equations of motion are solved
using the Newmark method. In this method, having given initial conditions, the
equations of motion are integrated numerically until the steady state solution is
obtained. The above-mentioned process of integration can be very time consuming,
especially when the damping in structures is very small as in the considered case. For
example, in the present case the determination of steady state solution by the Newmark
method for the chosen mean velocity was from a few hundred to one thousand times
slower than the time needed to determine the whole response curve by the continuation
method. The calculated results for the steady state solution are also shown in Figure 3
(the small crosses). The perfect agreement between the results obtained by both methods
is obvious.

In Figure 4, the convergence of the finite element method, with respect to a number of
elements, is presented. The dashed line shows the response curve for the beam divided into



Figure 3. A comparison of results obtained by the Newmark method (+) and the harmonic balance method.

Figure 4. The response curves for beams divided into - - - 3, } 5 and –&– 10 finite elements.
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three elements. The solution obtained for the beam modelled by five elements is drawn in
the solid line. Moreover, the small squares show the results for the beam divided into 10
elements. It is clear that the model with five elements give us the correct results.
However, the results described below are obtained for the beam divided into 10 identical
elements.

The results of the next analysis are shown in Figure 5, where the response curves
obtained for different damping factors are presented. Here, the synchronization range near
the first natural frequency of the beam is shown. As can be seen, the influence of damping
is very strong both on the amplitudes of vibrations and on the range of synchronization.
Furthermore, the results of similar calculations made for the second synchronization
region are presented in Figure 6. The second synchronization region is considerably larger
than the first one.



Figure 5. The influence of damping on the amplitude of vibrations and the synchronization range (the
shedding frequency near the first natural frequency).

Figure 6. The influence of damping on the amplitude of vibrations and the synchronization range (the
shedding frequency near the second natural frequency).
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In Figure 7, the response curves calculated for beams with different rigidity and different
damping factors are shown. The curves 1 and 2 are obtained if the beam rigidity is
EJ ¼ 2	0
 109 Nm2 while the curves 3 and 4 are obtained when the beam rigidity is equal
to EJ ¼ 3	0
 109 Nm2: For the beam with greater rigidity the region of synchronization
is larger and occurs for greater mean wind speeds.

The influence of the length of the loaded part of the beam in the synchronization
region is the subject of the last analysis. In Figure 8, the results of calculations
are presented for different loaded finite elements. As it is expected the maximum
amplitude of vibration and the range of synchronization increase when more elements are
loaded.

All these results indicate that the amplitudes of vibrations grow gradually near the left
end of the synchronization region and decrease very fast near the right one.



Figure 7. The response curves for beams with different rigidity.

Figure 8. The response curves for the different length of distribution of excitation forces.
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9. CONCLUDING REMARKS

In this paper, the computational methods for the analysis of vortex-induced vibration of
beams are presented. The main aerodynamic properties of air are taken into account using
the model proposed by Hartlen and Currie. The extension of this model to beams treated
as multi-degree-of-freedom systems is proposed in this paper. It is believed that the
approach presented is a good compromise between the needed effort of calculations and
the desired accuracy of the solution of the problem considered. The semi-analytical
method (the harmonic balance method) is employed to determine the steady state solution
for a set of values of the mean wind velocity. The continuation method used to solve the
amplitude equation which makes a parametric analysis of the problem possible. The
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validity of the harmonic balance results is confirmed by means of a time integration
method. Several numerical analyses were carried out for the beams with cylindrical cross-
section. They refer to the convergence of the proposed way of discretization, the influence
of damping on the amplitude of vibration and a range of the mean wind velocities when
the lock-in phenomenon occurs.
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APPENDIX A

The solution of the considered problem by means of the normal mode
approach is briefly described. The equation of motion of the beam and the
equation of motion of the fictitious aerodynamic oscillators are written in the following
form:

m .wwðx; tÞ þ cb ’wwðx; tÞ þ EJw;xxxx ¼ 1
2
rU2ðxÞDðxÞcLðx; tÞ; ðA:1Þ

.ccLðx; tÞ � aoscLðx; tÞ þ g=os ’cc
3
Lðx; tÞ þ o2

s cLðx; tÞ ¼ bon=DðxÞ ’wwðx; tÞ: ðA:2Þ

Above, cb denotes the beam damping factor and on is the chosen natural frequency of
beam. The real time t is used in the motion equations instead of the non-dimensional time
t ¼ ont used in the original Hartlen–Currie formulation. For this reason on appears on
the right side of equation (A.2). Moreover, it is assumed that U(x)=U=const. and
D(x)=D=const.

The solution of the equations of motion is assumed of the following form:

wðx; tÞ ¼ vðtÞ=D sin
npx

L
; cLðx; tÞ ¼ cðtÞ sin

npx

L
; ðA:3Þ

where vðtÞ and cðtÞ are the modal coordinates.
Introducing the assumed solution (A.3) into the equations of motion (A.1) and (A.2)

and applying the Galerkin method in space, one obtains the following modal equations of
motion for the simply supported beam:

.vvðtÞ þ Zon ’vvðtÞ þ o2
nvðtÞ � o2

s acðtÞ ¼ 0;

.ccðtÞ � aos ’ccðtÞ þ 3g=ð4osÞ’cc3LðtÞ þ o2
s cðtÞ � b’vvðtÞ ¼ 0;

ðA:4Þ

where Z is the modal damping of beam and a ¼ rD3=ð8p2S2mÞ:
The steady state solution of the modal equations (A.4) is assumed in the form

vðtÞ ¼ vc cosot þ vs sinot; cðtÞ ¼ cc cosot þ cs sinot: ðA:5Þ
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The unknown amplitudes vc, vs; cc and cs are determined from the following amplitude
equations:

ðo2
n � o2Þvc þ Zoonvs � o2

s acc ¼ 0;

� Zoonvc þ ðo2
n � o2Þvs � o2

s acs ¼ 0;

ðo2
s � o2Þcc � oosacs þ

9o3g
16os

ðc2c þ c2s Þcs � obvs ¼ 0;

oosacc �
9o3g
16os

ðc2c þ c2s Þcc þ ðo2
s � o2Þcs þ obvc ¼ 0; ðA:6Þ

derived by means of the harmonic balance method. The amplitude equations (A.6) can be
solved using, for example, the continuation method described in the previous section.
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